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REDUCTION OF THE CODIMENSION
OF AN ISOMETRIC IMMERSION

JOSEPH ERBACHER

0. Introduction

Let¢: M*— M**2(%) be an isometric immersion of a connected n-dimensional
Riemannian manifold M* into an (n 4 p)-dimensional Riemannian manifold
M»+2(%) of constant sectional curvature & When can we reduce the codimen-
sion of the immersion, i.e., when does there exist a proper totally geodesic
submanifold N of M**?(¢) such that H(M™) C N? We prove the following:

Theorein. If the first normal space N (x) is invariant under parallel transla-
tion with respect to the connection in the normal bundle and | is the constant
dimension of N,, then there exists a totally geodesic submanifold N"*' of
M**2(2) of dimension n + 1 such that (M™) C N**,

This theorem extends some results of Allendoerfer [2].

1. Notation and some formulas of Riemannian geomefry

Let ¢p: M™® — M"*2(Z) be as in the introduction. For all local formulas we
may consider ¢ as an imbedding and thus identify x ¢ M* with ¢(x) e M™+».
The tangent space T (M™) is identified with a subspace of the tangent space
T, (M**?). The normal space T+ is the subspace of T, (M"*?) consisting of all
X e T (M"*?) which are orthogonal to T ,(M") with respect to the Riemannian
metric g. Let I (respectively ) denote the covariant differentiation in M*
(respectively M#»*?), and D the covariant differentiation in the normal bundle.
We will refer to 7 as the tangential connection and D as the normal connection.

With each £e 7L is associated a linear transformation of 7', (M™) in the
following way. Extend £ to a normal vector field defined in a neighborhood of
x and define —A,X to be the tangential component of F/y& for X e T (M™).

A.X depends only on £ at x and X. Given an orthonormal basis &,, - - -, £, of
T+ we write A, = A,_and call the 4,’s the second fundamental forms associ-
ated with &,, ---,&,. If &, --., &, are now orthonormal normal vector fields

in a neighborhood U of x, they determine normal connection forms s,,; in U by
Dxéa - ; saﬁ(X)éﬁ
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for X e T (M™). We let R¥ denote the curvature tensor of the normal con-
nection, i.e.,

R¥(X,Y) = DyDy — DyDy — Dix 5.

We then have the following relationships (in this paper Greek indices run
from 1 to p):

(1) VY =V:Y + T 84X, Y, ,

(2) gA4X,Y) = g(X,A,Y),

(3) Vyb,= —AX + Dyé, = —A4X + 2 XD »
(4) S+ S, =0,

(5) VxA)Y = 3 5Q04,Y = Trd)X — 3 s,(NA:X

—Codazzi equation,

T x5:p)Y — Vys.)X = 2ds, )X, Y)
(6) = X 5,5(Y) — Y 5,5(X) — 5,,([X, Y])
= g([Aa’ Ap]Xs Y) + Z {sar(X)srﬁ(Y) - sﬂr(Y)srﬁ(X)}

— Ricci equation,

RY(X,Y), = § 8([4,, 451X, Y)§,

(7)
= Zﬂ] {2(ds, )X, Y) + Zr] {5/ (¥)8,5(X) — 5,(X)s,,(DI}}E,
where X and Y are tangent to M™.

The first normal space N,(x) is defined to be the orthogonal complement of
{£eTi|A, = 0} in TL. R* will denote the k-dimensional Euclidean space,
S$*(1) the k-dimensional unit sphere in R**!, and H*(—1) the k-dimensional
simply connected space form of constant sectional curvature — 1. All immer-
sions, vector fields, etc., are assumed to be of C=.

2. Reducing the codimension of an isometric immersion

Let ¢: M, — M"*?(¢) be an isometric immersion of a connected #n-dimen-
sional Riemannian manifold M” into an (n + p)-dimensional Riemannian
manifold A**?(¢) of constant sectional curvature &.

Lemma 1. Suppose the first normal space N,(x) is invariant under parallel
translation with respect to the normal connection and l is the constant dimen-
sion of N,. Let N(x) = Ni(x), where the orthogonal complement is taken in
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Tk, and for x e M™ let #(x) = T (M"™) + N(x). Then for any x ¢ M" there
exists differentiable orthonormal normal vector fields &,, - - -, &, defined in a
neighborhood U of x such that:

(a) ForanyyeU, §), - -,&() span N\(3), and &,,(), - - -, &,(y) span
N Z(y), o

(b) Vi, =0inUfora>1+ 1 and X tangent to M*,

(¢) The family #(v),y e U, is invariant under parallel translation with
respect to the connection in M**? along any curve in U.

Proof. Since N, is invariant under parallel translation with respect to the
normal connection, sois N,. Let x ¢ M™ and choose orthonormal normal vectors
El(x)a R | Ep(x) atx such that El(x)> it El(x) Spa‘n_,Nl(x) and El+1(x)> Tt Ep(x)
span N,(x). Extend &, -..,§, to differentiable orthonormal normal vector
fields defined in a normal neighborhood U of x by parallel translation with
respect to the normal connection along geodesics in M™. This proves (a).

Since N, and N, are invariant under parallel translation with respect to the
normal connection, we have D& ¢ N, (respectively N,) for & ¢ N, (respectively
N,). Let &, ---,&, be chosen as in (a). Then 5,, =0 in U for 1 < a <,
l+1<B<pandl1 << I+ 1< a< p. Equations (6) and (7) imply
that R¥(X,Y)¢ = 0 for £¢ N,, and since N, is also invariant under parallel
translation with respect to the normal connection we conclude that for
& e N,(3), y e U, the parallel translation of & with respect to the normal con-
nection is independent of path in U. Thus D&, = 0 in U for « > 1 + 1, and
S, =0mm Ufor I+ 1< a<p, 1+ 1<B<p. Because of (3), we have
Fy&, = 0for @ > 1+ 1 and X tangent to M*, proving (b). «

To prove (c) it suffices to show that 14 +Z e whenever Z¢.% and X is
tangent to M". This follows from (1) and (3) and (a) and (b) above.

We shall now prove our Theorem under the assumption that M**? is simply
connected and complete. We consider the cases ¢=0,¢ >0 and & <0
separately.

Proposition 1. The Theorem is true if M"*? = R**?.

Proof. Let xeM™ and let &,---,&,, and U be as in Lemma 1. Define
functions f, on U by f, = g(%, &,) where X is the position vector. Then

X-f, = Vif, =8X,&) + g V) =0

for « > 1 + 1 and X tangent to U. Thus U les in the intersection of p — [
hyperplanes, whose normal vectors are linearly independent, and the desired
result is true locally; i.e., if x ¢ M" there exist a neighborhood U of x and a
Euclidean subspace R**' such that ¢(U) C R"*’. To get the global result we
use the connectedness of M*. Let x,y ¢ M® with neighborhoods U and V re-
spectively such that U N V = ¢ and ¢(U) C R2*Y, (V) C Rp**. Then

HUNV)C RN R
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If Rp+' s Ry*' then RF*' N Ry*' = R™**, k < I, and this implies that
dim N,(z) <! for ze U N V. Since dim N, = constant = I, we must have
R?** = R7*'. This proves the global result.

Proposition 2. The Theorem is true if M*+? = S"+7(1).

Proof. Consider §7*2(1) as the unit sphere in R"*?*! with center at the
origin of R**?*!, Let & be the inward pointing unit normal of $**?, N (x) be
the first normal space for M” considered as immersed in R**?*!,  be the
Euclidean connection in R"*?*! and &, -..,&, be chosen as in Lemma 1.
Then 7,6 = —X and V&, = V&, for X tangent to M~. It readily follows
that N,(x) = N,(x) + span {£(x)} and that N, is invariant under parallel trans-
lation with respect to the normal connection for M™ considered as immersed
in R**?+!, Thus, by Proposition 1, there exists an R"****! such that $(M")
C Rn+z+1, namely’

R™H = T,(M™) + Ny(®) + span {£@)}

for any xe M*. Hence R™*'*! contains & and therefore passes through the
origin of R**?*', Thus

(p(M") C Rn+L+1 N S?'z+p(1) — Sn+l(1) .

Proposition 3. Qur theorem is true if M**? = H"*?(—1).

Proof. It is convenient to consider H**? as being in a Minskowski space
Enr+p+1 T et E**?+! be a Minskowski space with global coordinates x°, . . ., x**?
and pseudo-Riemannian metric g determined by the quadratic form

glx,y) = —X¥y + XY+ o+ Xy oVrip -
Consider the submanifold H*** defined by
_xg.*_x?.*_ +xfz+p: —1,x,,>0.

The pseudo-Riemannian metric g( , ) on E**?*! induces a Riemannian metric
on H"*? such that H**? becomes a simply connected Riemannian manifold
of constant sectional curvature —1 (cf. [4, p. 66]). Let § = X, the position
vector. Then for x e H**?, &(x) is normal to H**? and g(&(x), £(x)) = —1.
Let 7 be the Euclidean connection on E»*?*!  i.e., the connection arising
from g; and define A by V& = —AX for X tangent to H**?, Then 4 = —1I
and

’7XY = ’7XY — 84X, Y)¢

for X,Y tangent to H**?. The minus sign, rather than a plus sign as in (1),
occurs in the last equation because g is indefinite. Let &,---,&, be as in
Lemma 1 and consider M” as isometrically immersed in E**?*!, Then V&,
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V&, for X tangent to M. In a way similar to the argument in Proposition 2
we can show that

W(x) = £ (x) + span {§(x)} = T,(M™) + N,(x) + span {§(x)}

is invariant under parallel translation with respect to the Euclidean connection
in E**?+! Thus, in a way similar to the argument in Proposition 1; there exists
an (n + I 4 1)-dimensional plane E**'*! (=W(x) for any x e M®) such that
HM™) C E****!, We may assume that the point x, = 1, x, =0 for k > 1 is
in ¢(M™). Then, since E****! contains & and passes through the point x, = 1,
x, = 0 for k > 1, we conclude that E**+!*! is perpendicular to the x, = O plane
and passes through the origin of E»*?*!, Thus H**? N E»*+!+! s totally geodesic
in H**?, and

HM™) C H*+Y(—1) = H*?(—1) N Er+i+,

Clearly completeness is not essential in Propositions 1,2, and 3 in the sense
that if M**? is a connected open set of R**?, S**?, or H**? then Propositions
1,2, and 3 remain true. Thus when M**2(¢) is neither simply connected nor
complete we obtain the local result: if x ¢ M", then there exists a neighborhood
U of x such that ¢(U) is contained in a totally geodesic submanifold N3** of
Mn+?, We obtain the global result (the Theorem) by a connectedness argument
similar to the connectedness argument in Proposition 1.

Remarks. It is an easy consequence of Codazzi’s equation that if the type
number of ¢ (see [3, vol. II, p. 349]) is greater than or equal to two and N,
has constant dimension, then N, is invariant under parallel translation with
respect to the normal connection. To prove this last remark, let / be the dimen-
sion of N; and choose orthonormal normal vectors &, - - -, &, in a neighborhood
Uof xsuchthat &, ..., &, span N,(y) for y e U (cf. § 3). Since the type number
of the immersion is greater than or equal to two, there exist X and Y tangent
to M" such that 4,X and 4,Y, 1 < j <1, are linearly independent. Codazzi’s
equation then implies that

|1 !
,sZ—:1 5.5(X)A,Y = ﬁz_]l S.s(VAX
for « > 1 4 1, since A;s =0 for'ﬁ > 1. Since A;Y and 4,X, 1 < <1, are

linearly independent we conclude that s,,(X) = 5,(Y) =0 for « > 1 > 8.
But, for any Z tangent to M*, we have

i 1
2 5l AZ = 3 s, DAX .

Thus s,,(Z) = 0 for « > 1 > 5. We conclude that D,¢ ¢ N, if Z is tangent to
M" and & e N,. Thus N, is invariant under parallel translation with respect to
the normal connection.
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3. The higher normal spaces

Let ¢: M™ — M+2(2) be as in § 1, and A the second fundamental form of
the immersion, i.e., for X, Y tangent to M", A(X, Y) is the normal component
of ;Y. Equation (1) of § 1 may be written as

P.Y =0,Y + (X,Y) .

Following Allendoerfer [1] we define the normal spaces as follows. The first
normal space N,(x) is defined to be the

span {A(X,Y) |X,Y e T ,(M™)} .

Choosing orthonormal normal vectors £, - - -, &, at x such that &, - - -, &, span
N.(x), where [ is the dimension of N,(x), and using (1) one easily sees that this
agrees with our previous definition for N,(x) given in § 1. Suppose Ny, - - -, N,
have been defined such that N; | N, for i+ j. If

NG + - + Ny@) # T4
define N, ,,(x) as follows: Let
L(x) = span {(Dz(Dz,(- - - (Dz,(WMZ 115 Zy.))) -+ M} >
where Z,, - - ., Zy,, are vector fields tangent to M*. If
L) N (NG + -+ 4 Nyt

is not equal to {0}, where the orthogonal complement is in 7%, define N,,,(x)
to be

L) 0 (NGx) + - + NG)L.
Otherwise define N,,,(x) to be
N,@®) + - + Nyt

It is clear that we may speak of the last normal space.

Note the following lemma.

Lemma. If each N.(x) has constant dimension n,, then there exist ortho-
normal normal vector fields &, ---,&, in a neighborhood U of x such that
Ernshererng_rts =+ * s Eny SPAN No(y) for ye U.

Proof. Choose vector fields X; and Y,;, 1 < i < n,, in a neighborhood
of x such that (h(X,,Y,)), are linearly independent and span N,(x). Since
h(X,;,Y,), 1 < i< n, are differentiable normal vector fields in a neighborhood
of x and linearly independent at x, they are linearly independent in a neighbor-
hood of x. But N, has constant dimension and A(X;, Y,) ¢ N,; using the Gram-
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Schmidt orthogonalization process we obtain orthonormal normal vector fields
&, -+, &, in a neighborhood U of x such that &, ..., &,, span N,(y) for ye U.
Now suppose &, - -+, &,,,....n, have been found with the desired property.
If N,,, is the last normal space, then

Nk+l=(Nl+ +Nlc)'L'

By using an orthonormal basis of the normal space in a neighborhood of x and
&, » 5 Enisunsn, abOVe, it is clear that we may find an orthonomal basis of
N, in a neighborhood of x. If N, is not the last normal space, then we may
obtain &, m + .-+ +n, +1<i<n + .-+ 4 n,,,, in a neighborhood ¥V
of x, by various choices of the vector fields Z,, - - -, Z, ., so that

(a) each &, is of the form

Dz Dz (- Dz, (MZy 11, Z,))) «++))
® §0)eN, () for yeV,
'(c) £/(x) are linearly independent and span N, (x).

By the differentiability of £;, they are linearly independent in a neighborhood
of x. By (b) and the constant dimension of N,,,, they span N,,, in a neigh-
borhood of x. Use the Gram-Schmidt orthogonalization process to obtain the
desired result.

Thus, when each N, has constant dimension, each N, is a differentiable
vector bundle. We also note that when each N, has constant dimension we
may replace L(x) in the definition of N, ,(x) by

span {(Dx8).| X e T ,(M™), £ alocal cross section for N, near x} .

If N, is invariant under paralle] translation with respect to the normal con-
nection, then there are only two normal spaces N, and N, = Ni.

Let N(x) be a subspace of Tt such that N(x) > N,(x). If N is invariant
under parallel translation with respect to the normal connection, then by re-
placing ¥(x) = T .(M") + N(x) by T, (M") + N(x) in Lemma 1 we may
prove the following:

Thorem. Let ¢: M* — M»*?(¢) be asin § 1. If N D N, and N is invariant
under parallel translation with respect to the normal connection and | is the
dimension of N, then there exists a totally geodesic submanifold N**' of
M**2(3) such that $(M™) C N™*L.

For example, though N, may not be invariant under parallel translation with
respect to the normal connection, we may have N, 4+ N, invariant under
paralle] translation with respect to the normal connection.
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