REDUCTION OF THE CODIMENSION OF AN ISOMETRIC IMMERSION #### JOSEPH ERBACHER ### 0. Introduction Let $\psi \colon M^n \to \tilde{M}^{n+p}(\tilde{c})$ be an isometric immersion of a connected *n*-dimensional Riemannian manifold M^n into an (n+p)-dimensional Riemannian manifold $\tilde{M}^{n+p}(\tilde{c})$ of constant sectional curvature \tilde{c} . When can we reduce the codimension of the immersion, i.e., when does there exist a proper totally geodesic submanifold N of $\tilde{M}^{n+p}(\tilde{c})$ such that $\psi(M^n) \subset N$? We prove the following: **Theorem.** If the first normal space $N_1(x)$ is invariant under parallel translation with respect to the connection in the normal bundle and l is the constant dimension of N_1 , then there exists a totally geodesic submanifold N^{n+l} of $\tilde{M}^{n+p}(\tilde{c})$ of dimension n+l such that $\phi(M^n) \subset N^{n+l}$. This theorem extends some results of Allendoerfer [2]. # 1. Notation and some formulas of Riemannian geometry Let $\psi \colon M^n \to \bar{M}^{n+p}(\tilde{c})$ be as in the introduction. For all local formulas we may consider ψ as an imbedding and thus identify $x \in M^n$ with $\psi(x) \in \bar{M}^{n+p}$. The tangent space $T_x(M^n)$ is identified with a subspace of the tangent space $T_x(\bar{M}^{n+p})$. The normal space T_x^+ is the subspace of $T_x(\bar{M}^{n+p})$ consisting of all $X \in T_x(\bar{M}^{n+p})$ which are orthogonal to $T_x(M^n)$ with respect to the Riemannian metric g. Let \bar{V} (respectively \bar{V}) denote the covariant differentiation in M^n (respectively \bar{M}^{n+p}), and D the covariant differentiation in the normal bundle. We will refer to \bar{V} as the tangential connection and D as the normal connection. With each $\xi \in T_x^{\perp}$ is associated a linear transformation of $T_x(M^n)$ in the following way. Extend ξ to a normal vector field defined in a neighborhood of x and define $-A_{\xi}X$ to be the tangential component of $\tilde{V}_X\xi$ for $X \in T_x(M^n)$. $A_{\xi}X$ depends only on ξ at x and X. Given an orthonormal basis ξ_1, \dots, ξ_p of T_x^{\perp} we write $A_{\alpha} = A_{\xi_{\alpha}}$ and call the A_{α} 's the second fundamental forms associated with ξ_1, \dots, ξ_p . If ξ_1, \dots, ξ_p are now orthonormal normal vector fields in a neighborhood U of x, they determine normal connection forms $s_{\alpha\beta}$ in U by $$D_X \xi_\alpha = \sum_{\beta} s_{\alpha\beta}(X) \xi_{\beta}$$ Received May 20, 1970. This paper is a part of the author's doctoral dissertation written under the direction of Professor K. Nomizu at Brown University. The research was partially supported by the National Science Foundation. for $X \in T_x(M^n)$. We let R^N denote the curvature tensor of the normal connection, i.e., $$R^{N}(X,Y) = D_{X}D_{Y} - D_{Y}D_{X} - D_{[X,Y]}.$$ We then have the following relationships (in this paper Greek indices run from 1 to p): (1) $$\widetilde{\mathcal{V}}_X Y = \mathcal{V}_X Y + \sum_{\alpha} g(A_{\alpha} X, Y) \xi_{\alpha} ,$$ $$(2) g(A_{\alpha}X, Y) = g(X, A_{\alpha}Y),$$ (3) $$\tilde{V}_X \xi_\alpha = -A_\alpha X + D_X \xi_\alpha = -A_\alpha X + \sum_\beta s_{\alpha\beta}(X) \xi_\beta ,$$ $$(4) s_{\alpha\beta} + s_{\beta\alpha} = 0,$$ (5) $$(\nabla_X A_{\alpha})Y - \sum_{\beta} s_{\alpha\beta}(X)A_{\beta}Y = (\nabla_Y A_{\alpha})X - \sum_{\beta} s_{\alpha\beta}(Y)A_{\beta}X$$ — Codazzi equation, $$(\nabla_{X} s_{\alpha\beta}) Y - (\nabla_{Y} s_{\alpha\beta}) X = 2(ds_{\alpha\beta})(X, Y)$$ $$= X \cdot s_{\alpha\beta}(Y) - Y \cdot s_{\alpha\beta}(X) - s_{\alpha\beta}([X, Y])$$ $$= g([A_{\alpha}, A_{\beta}] X, Y) + \sum_{r} \{s_{\alpha r}(X) s_{r\beta}(Y) - s_{\alpha r}(Y) s_{r\beta}(X)\}$$ $$- \text{Ricci equation,}$$ (7) $$R^{N}(X,Y)\xi_{\alpha} = \sum_{\beta} g([A_{\alpha},A_{\beta}]X,Y)\xi_{\beta} \\ = \sum_{\beta} \{2(ds_{\alpha\beta})(X,Y) + \sum_{\tau} \{s_{\alpha\tau}(Y)s_{\gamma\beta}(X) - s_{\alpha\tau}(X)s_{\gamma\beta}(Y)\}\}\xi_{\beta},$$ where X and Y are tangent to M^n . The first normal space $N_1(x)$ is defined to be the orthogonal complement of $\{\xi \in T_x^\perp | A_\xi = 0\}$ in T_x^\perp . R^k will denote the k-dimensional Euclidean space, $S^k(1)$ the k-dimensional unit sphere in R^{k+1} , and $H^k(-1)$ the k-dimensional simply connected space form of constant sectional curvature -1. All immersions, vector fields, etc., are assumed to be of C^∞ . # 2. Reducing the codimension of an isometric immersion Let $\phi: M_n \to \tilde{M}^{n+p}(\tilde{c})$ be an isometric immersion of a connected *n*-dimensional Riemannian manifold M^n into an (n+p)-dimensional Riemannian manifold $\tilde{M}^{n+p}(\tilde{c})$ of constant sectional curvature \tilde{c} . **Lemma 1.** Suppose the first normal space $N_1(x)$ is invariant under parallel translation with respect to the normal connection and l is the constant dimension of N_1 . Let $N_2(x) = N_1^{\perp}(x)$, where the orthogonal complement is taken in T_x^{\perp} , and for $x \in M^n$ let $\mathcal{S}(x) = T_x(M^n) + N_1(x)$. Then for any $x \in M^n$ there exists differentiable orthonormal normal vector fields ξ_1, \dots, ξ_p defined in a neighborhood U of x such that: - (a) For any $y \in U$, $\xi_1(y)$, \dots , $\xi_l(y)$ span $N_1(y)$, and $\xi_{l+1}(y)$, \dots , $\xi_p(y)$ span $N_2(y)$, - (b) $\tilde{V}_X \xi_\alpha = 0$ in U for $\alpha \ge l + 1$ and X tangent to M^n , - (c) The family $\mathcal{S}(y)$, $y \in U$, is invariant under parallel translation with respect to the connection in \hat{M}^{n+p} along any curve in U. **Proof.** Since N_1 is invariant under parallel translation with respect to the normal connection, so is N_2 . Let $x \in M^n$ and choose orthonormal normal vectors $\xi_1(x), \dots, \xi_p(x)$ at x such that $\xi_1(x), \dots, \xi_l(x)$ span $N_1(x)$ and $\xi_{l+1}(x), \dots, \xi_p(x)$ span $N_2(x)$. Extend ξ_1, \dots, ξ_p to differentiable orthonormal normal vector fields defined in a normal neighborhood U of x by parallel translation with respect to the normal connection along geodesics in M^n . This proves (a). Since N_1 and N_2 are invariant under parallel translation with respect to the normal connection, we have $D_X \xi \in N_1$ (respectively N_2) for $\xi \in N_1$ (respectively N_2). Let ξ_1, \dots, ξ_p be chosen as in (a). Then $s_{\alpha\beta} = 0$ in U for $1 \le \alpha \le l$, $l+1 \le \beta \le p$ and $1 \le \beta \le l$, $l+1 \le \alpha \le p$. Equations (6) and (7) imply that $R^N(X,Y)\xi = 0$ for $\xi \in N_2$, and since N_2 is also invariant under parallel translation with respect to the normal connection we conclude that for $\xi \in N_2(y)$, $y \in U$, the parallel translation of ξ with respect to the normal connection is independent of path in U. Thus $D\xi_\alpha = 0$ in U for $\alpha \ge l+1$, and $s_{\alpha\beta} = 0$ in U for $l+1 \le \alpha \le p$, $l+1 \le \beta \le p$. Because of (3), we have $\widetilde{V}_X \xi_\alpha = 0$ for $\alpha \ge l+1$ and X tangent to M^n , proving (b). To prove (c) it suffices to show that $\tilde{V}_X Z \in \mathcal{S}$ whenever $Z \in \mathcal{S}$ and X is tangent to M^n . This follows from (1) and (3) and (a) and (b) above. We shall now prove our Theorem under the assumption that \tilde{M}^{n+p} is simply connected and complete. We consider the cases $\tilde{c} = 0$, $\tilde{c} > 0$ and $\tilde{c} < 0$ separately. **Proposition 1.** The Theorem is true if $\tilde{M}^{n+p} = \mathbb{R}^{n+p}$. *Proof.* Let $x \in M^n$ and let ξ_1, \dots, ξ_p , and U be as in Lemma 1. Define functions f_{α} on U by $f_{\alpha} = g(\vec{x}, \xi_{\alpha})$ where \vec{x} is the position vector. Then $$X \cdot f_{\alpha} = \tilde{\mathcal{V}}_{X} f_{\alpha} = g(X, \xi_{\alpha}) + g(\vec{x}, \tilde{\mathcal{V}}_{X} \xi_{\alpha}) = 0$$ for $\alpha \geq l+1$ and X tangent to U. Thus U lies in the intersection of p-l hyperplanes, whose normal vectors are linearly independent, and the desired result is true locally; i.e., if $x \in M^n$ there exist a neighborhood U of x and a Euclidean subspace \mathbf{R}^{n+l} such that $\psi(U) \subset \mathbf{R}^{n+l}$. To get the global result we use the connectedness of M^n . Let $x, y \in M^n$ with neighborhoods U and V respectively such that $U \cap V \neq \phi$ and $\psi(U) \subset \mathbf{R}_1^{n+l}$, $\psi(V) \subset \mathbf{R}_2^{n+l}$. Then $$\phi(U \cap V) \subset R_1^{n+l} \cap R_2^{n+l}$$. If $R_1^{n+l} \neq R_2^{n+l}$ then $R_2^{n+l} \cap R_2^{n+l} = R^{n+k}$, k < l, and this implies that $\dim N_1(z) < l$ for $z \in U \cap V$. Since $\dim N_1 = \text{constant} = l$, we must have $R_1^{n+l} = R_2^{n+l}$. This proves the global result. **Proposition 2.** The Theorem is true if $\tilde{M}^{n+p} = S^{n+p}(1)$. *Proof.* Consider $S^{n+p}(1)$ as the unit sphere in \mathbb{R}^{n+p+1} with center at the origin of \mathbb{R}^{n+p+1} . Let ξ be the inward pointing unit normal of S^{n+p} , $\overline{N}_1(x)$ be the first normal space for M^n considered as immersed in \mathbb{R}^{n+p+1} , \overline{V} be the Euclidean connection in \mathbb{R}^{n+p+1} , and ξ_1, \dots, ξ_p be chosen as in Lemma 1. Then $\overline{V}_X \xi = -X$ and $\overline{V}_X \xi_\alpha = \widetilde{V}_X \xi_\alpha$ for X tangent to M^n . It readily follows that $\overline{N}_1(x) = N_1(x) + \text{span } \{\xi(x)\}$ and that \overline{N}_1 is invariant under parallel translation with respect to the normal connection for M^n considered as immersed in \mathbb{R}^{n+p+1} . Thus, by Proposition 1, there exists an \mathbb{R}^{n+l+1} such that $\psi(M^n) \subset \mathbb{R}^{n+l+1}$, namely, $$\mathbf{R}^{n+l+1} = T_x(\mathbf{M}^n) + N_1(x) + \text{span } \{\xi(x)\},$$ for any $x \in M^n$. Hence \mathbb{R}^{n+l+1} contains ξ and therefore passes through the origin of \mathbb{R}^{n+p+1} . Thus $$\phi(M^n) \subset \mathbb{R}^{n+l+1} \cap S^{n+p}(1) = S^{n+l}(1) .$$ **Proposition 3.** Our theorem is true if $\tilde{M}^{n+p} = H^{n+p}(-1)$. **Proof.** It is convenient to consider H^{n+p} as being in a Minskowski space E^{n+p+1} . Let E^{n+p+1} be a Minskowski space with global coordinates x^0, \dots, x^{n+p} and pseudo-Riemannian metric g determined by the quadratic form $$g(x,y) = -x_0y_0 + x_1y_1 + \cdots + x_{n+p}y_{n+p}.$$ Consider the submanifold H^{n+p} defined by $$-x_0^2 + x_1^2 + \cdots + x_{n+v}^2 = -1, x_0 > 0.$$ The pseudo-Riemannian metric $g(\cdot, \cdot)$ on E^{n+p+1} induces a Riemannian metric on H^{n+p} such that H^{n+p} becomes a simply connected Riemannian manifold of constant sectional curvature -1 (cf. [4, p. 66]). Let $\xi = \vec{x}$, the position vector. Then for $x \in H^{n+p}$, $\xi(x)$ is normal to H^{n+p} and $g(\xi(x), \xi(x)) = -1$. Let \bar{V} be the Euclidean connection on E^{n+p+1} , i.e., the connection arising from g; and define A by $\bar{V}_X \xi = -AX$ for X tangent to H^{n+p} . Then A = -I and $$\bar{V}_X Y = \tilde{V}_X Y - g(AX, Y)\xi$$ for X, Y tangent to H^{n+p} . The minus sign, rather than a plus sign as in (1), occurs in the last equation because g is indefinite. Let ξ_1, \dots, ξ_p be as in Lemma 1 and consider M^n as isometrically immersed in E^{n+p+1} . Then $\tilde{V}_X \xi_\alpha$ $\bar{V}_X \xi_\alpha$ for X tangent to M^n . In a way similar to the argument in Proposition 2 we can show that $$W(x) = \mathcal{S}(x) + \operatorname{span} \left\{ \xi(x) \right\} = T_x(M^n) + N_1(x) + \operatorname{span} \left\{ \xi(x) \right\}$$ is invariant under parallel translation with respect to the Euclidean connection in E^{n+p+1} . Thus, in a way similar to the argument in Proposition 1; there exists an (n+l+1)-dimensional plane E^{n+l+1} (=W(x) for any $x \in M^n$) such that $\psi(M^n) \subset E^{n+l+1}$. We may assume that the point $x_0 = 1$, $x_k = 0$ for $k \ge 1$ is in $\psi(M^n)$. Then, since E^{n+l+1} contains ξ and passes through the point $x_0 = 1$, $x_k = 0$ for $k \ge 1$, we conclude that E^{n+l+1} is perpendicular to the $x_0 = 0$ plane and passes through the origin of E^{n+p+1} . Thus $H^{n+p} \cap E^{n+l+1}$ is totally geodesic in H^{n+p} , and $$\phi(M^n) \subset H^{n+l}(-1) = H^{n+p}(-1) \cap E^{n+l+1}.$$ Clearly completeness is not essential in Propositions 1, 2, and 3 in the sense that if \tilde{M}^{n+p} is a connected open set of R^{n+p} , S^{n+p} , or H^{n+p} then Propositions 1, 2, and 3 remain true. Thus when $\tilde{M}^{n+p}(\tilde{c})$ is neither simply connected nor complete we obtain the local result: if $x \in M^n$, then there exists a neighborhood U of x such that $\psi(U)$ is contained in a totally geodesic submanifold N_U^{n+t} of \tilde{M}^{n+p} . We obtain the global result (the Theorem) by a connectedness argument similar to the connectedness argument in Proposition 1. **Remarks.** It is an easy consequence of Codazzi's equation that if the type number of ψ (see [3, vol. II, p. 349]) is greater than or equal to two and N_1 has constant dimension, then N_1 is invariant under parallel translation with respect to the normal connection. To prove this last remark, let l be the dimension of N_1 and choose orthonormal normal vectors ξ_1, \dots, ξ_p in a neighborhood U of x such that ξ_1, \dots, ξ_l span $N_1(y)$ for $y \in U$ (cf. § 3). Since the type number of the immersion is greater than or equal to two, there exist X and Y tangent to M^n such that A_jX and A_jY , $1 \le i \le l$, are linearly independent. Codazzi's equation then implies that $${\textstyle\sum\limits_{\beta=1}^{l}s_{\alpha\beta}(X)A_{\beta}Y}={\textstyle\sum\limits_{\beta=1}^{l}s_{\alpha\beta}(Y)A_{\beta}X},$$ for $\alpha \geq l+1$, since $A_{\beta}=0$ for $\beta > l$. Since $A_{\beta}Y$ and $A_{\beta}X$, $1 \leq \beta \leq l$, are linearly independent we conclude that $s_{\alpha\beta}(X)=s_{\alpha\beta}(Y)=0$ for $\alpha > l \geq \beta$. But, for any Z tangent to M^n , we have $$\sum_{\beta=1}^{l} s_{\alpha\beta}(X) A_{\beta} Z = \sum_{\beta=1}^{l} s_{\alpha\beta}(Z) A_{\beta} X.$$ Thus $s_{\alpha\beta}(Z) = 0$ for $\alpha > l \ge \beta$. We conclude that $D_Z \xi \in N_1$ if Z is tangent to M^n and $\xi \in N_1$. Thus N_1 is invariant under parallel translation with respect to the normal connection. ## 3. The higher normal spaces Let $\phi: M^n \to \tilde{M}^{n+p}(\tilde{c})$ be as in § 1, and h the second fundamental form of the immersion, i.e., for X, Y tangent to $M^n, h(X, Y)$ is the normal component of $\tilde{V}_X Y$. Equation (1) of § 1 may be written as $$\tilde{V}_X Y = V_X Y + h(X, Y) .$$ Following Allendoerfer [1] we define the normal spaces as follows. The first normal space $N_1(x)$ is defined to be the span $$\{h(X, Y) \mid X, Y \in T_x(M^n)\}$$. Choosing orthonormal normal vectors ξ_1, \dots, ξ_p at x such that ξ_1, \dots, ξ_l span $N_1(x)$, where l is the dimension of $N_1(x)$, and using (1) one easily sees that this agrees with our previous definition for $N_1(x)$ given in § 1. Suppose N_1, \dots, N_k have been defined such that $N_i \perp N_j$ for $i \neq j$. If $$N_1(x) + \cdots + N_k(x) \neq T_x^{(1)}$$ define $N_{k+1}(x)$ as follows: Let $$L(x) = \operatorname{span} \{ (D_{Z_1}(D_{Z_2}(\cdots (D_{Z_k}(h(Z_{k+1}, Z_{k+2}))) \cdots)))_x \},$$ where Z_1, \dots, Z_{k+2} are vector fields tangent to M^n . If $$L(x) \cap (N_1(x) + \cdots + N_k(x))^{\perp}$$ is not equal to $\{0\}$, where the orthogonal complement is in T_x^{\perp} , define $N_{k+1}(x)$ to be $$L(x) \cap (N_1(x) + \cdots + N_k(x))^{\perp}.$$ Otherwise define $N_{k+1}(x)$ to be $$(N_1(x) + \cdots + N_k(x))^{\perp}.$$ It is clear that we may speak of the last normal space. Note the following lemma. **Lemma.** If each $N_k(x)$ has constant dimension n_k , then there exist orthonormal normal vector fields ξ_1, \dots, ξ_p in a neighborhood U of x such that $\xi_{n_1+\dots+n_{k-1}+1}, \dots, \xi_{n_k}$ span $N_k(y)$ for $y \in U$. **Proof.** Choose vector fields X_i and Y_i , $1 \le i \le n_1$, in a neighborhood of x such that $(h(X_k, Y_i))_x$ are linearly independent and span $N_1(x)$. Since $h(X_i, Y_i)$, $1 \le i \le n_1$, are differentiable normal vector fields in a neighborhood of x and linearly independent at x, they are linearly independent in a neighborhood of x. But N_1 has constant dimension and $h(X_i, Y_i) \in N_1$; using the Gram- Schmidt orthogonalization process we obtain orthonormal normal vector fields ξ_1, \dots, ξ_{n_1} in a neighborhood U of x such that ξ_1, \dots, ξ_{n_1} span $N_1(y)$ for $y \in U$. Now suppose $\xi_1, \dots, \xi_{n_1+\dots+n_k}$ have been found with the desired property. If N_{k+1} is the last normal space, then $$N_{k+1} = (N_1 + \cdots + N_k)^{\perp}$$. By using an orthonormal basis of the normal space in a neighborhood of x and $\xi_1, \dots, \xi_{n_1+\dots+n_k}$ above, it is clear that we may find an orthonomal basis of N_{k+1} in a neighborhood of x. If N_{k+1} is not the last normal space, then we may obtain $\bar{\xi}_i$, $n_1 + \dots + n_k + 1 \le i \le n_1 + \dots + n_{k+1}$, in a neighborhood V of x, by various choices of the vector fields Z_1, \dots, Z_{k+2} so that (a) each $\bar{\xi}_i$ is of the form $$D_{Z_1}(D_{Z_2}(\cdots (D_{Z_k}(h(Z_{k+1},Z_{k+2})))\cdots))$$, - (b) $\bar{\xi}_i(y) \in N_{k+1}(y)$ for $y \in V$, - (c) $\bar{\xi}_i(x)$ are linearly independent and span $N_{k+1}(x)$. By the differentiability of $\bar{\xi}_i$, they are linearly independent in a neighborhood of x. By (b) and the constant dimension of N_{k+1} , they span N_{k+1} in a neighborhood of x. Use the Gram-Schmidt orthogonalization process to obtain the desired result. Thus, when each N_k has constant dimension, each N_k is a differentiable vector bundle. We also note that when each N_k has constant dimension we may replace L(x) in the definition of $N_{k+1}(x)$ by span $$\{(D_X\xi)_x | X \in T_x(M^n), \xi \text{ a local cross section for } N_k \text{ near } x\}$$. If N_1 is invariant under parallel translation with respect to the normal connection, then there are only two normal spaces N_1 and $N_2 = N_1^{\perp}$. Let N(x) be a subspace of T_x^{\perp} such that $N(x) \supset N_1(x)$. If N is invariant under parallel translation with respect to the normal connection, then by replacing $\mathcal{S}(x) = T_x(M^n) + N_1(x)$ by $T_x(M^n) + N(x)$ in Lemma 1 we may prove the following: **Thorem.** Let $\phi: M^n \to \tilde{M}^{n+p}(\tilde{c})$ be as in § 1. If $N \supset N_1$ and N is invariant under parallel translation with respect to the normal connection and l is the dimension of N, then there exists a totally geodesic submanifold N^{n+l} of $\tilde{M}^{n+p}(\tilde{c})$ such that $\phi(M^n) \subset N^{n+l}$. For example, though N_1 may not be invariant under parallel translation with respect to the normal connection, we may have $N_1 + N_2$ invariant under parallel translation with respect to the normal connection. # **Bibliography** - [1] C. D. Allendoerfer, Imbeddings of Riemann spaces in the large, Duke Math. J. 3 (1937) 317-333. - [2] —, Rigidity for spaces of class greater than one, Amer. J. Math. 61 (1939) 633-644. - [3] S. Kobayashi & K. Nomizu, Foundations of differential geometry, Vols. I & II, Interscience, New York, 1963, 1969. - [4] J. A. Wolf, Spaces of constant curvature, McGraw-Hill, New York, 1967. BROWN UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA